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Non-linear oscillators under harmonic and/or weak stochastic excitations are
considered in this paper. Under harmonic excitations alone, an analytical
technique based on a set of exponential transformations followed by harmonic
balancing is proposed to solve for a variety of one-periodic orbits. The stability
boundaries for such orbits in the associated parameter space are constructed using
the Floquet theory. Under a combination of harmonic and weak stochastic
excitations, a stochastic perturbation approach around the deterministic orbit is
adopted to obtain response statistics in terms of the evolving moment functions. In
the present study, the stochastic perturbation is assumed to be an additive white
noise process and equations for the evolving moments are derived using Ito
di!erential rule. A "fth order cumulant neglect closure is used to close the in"nite
hierarchy of moment equations. Limited numerical results are presented to
illustrate the implementation of the proposed scheme. The method is found to be
quite versatile and admits ready extensions to Md.o.f. systems under combined
harmonic and white or non-white, multiplicative or additive random excitations.
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1. INTRODUCTION

Even under purely deterministic and periodic excitations, the response of a non-
linear oscillator sometimes depends quite sensitively on the choice of parameters
and initial conditions. Thus, multiple-periodic, limit-periodic, quasi-periodic,
almost-periodic and even choatic motions are possible for di!erent ranges of the
associated parameters [1]. A simpler situation, more amenable to analytical
solutions, arises when the oscillator responds at the same frequency of the external
harmonic forcing function and such a response is generally referred to as one-
periodic response. Several analytical tools such as Krylov}Bogoliubov (KB)
averaging [2], averaging with Lie series and transforms [3], method of multiple
scales [4], harmonic balancing [5], incremental harmonic balancing [6] etc. are
available to obtain analytical approximations for one-periodic orbit in terms of
known analytic functions. Most of these methods, however, become either too
elaborate or inaccurate when the targeted one-periodic orbits in the phase space are
asymmetric or markedly non-elliptic. Byatt}Smith [7] has considered an
022-460X/99/340741#26 $30.00/0 ( 1999 Academic Press
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asymptotic series followed by a multiple time scaling to obtain di!erent periodic
orbits of the harmonically forced Du$ng}Holmes (DH) oscillator. Such an
approach is unfortunately rather too elaborate and requires a numerical e!ort
comparable to that of numerical integrations.

On the other hand, when the oscillator is driven by a combined deterministic and
broad-banded stochastic excitation (say, a white noise), the response, in general, is
not expected to be stationary. Moreover, for a signi"cantly low intensity of the
random noise with uniformly continuous sample paths, the response should be, in
a sense, &&close'' to the one under purely deterministic excitations [8]. An early
review on persistence of the topological features of associated deterministic
trajectories under random perturbations may be found in the work of Ludwig [9].
In particular, it has been shown that in the limit of the strength of the random noise,
modelled as a white noise process, going to zero, the corresponding di!usion
equation admits an asymptotic solution, which in turn can be found using the &&ray
method''. The method is essentially a perturbation scheme around that particular
ray which represents the deterministic trajectory itself. This leads to a nearly
Gaussian estimate for the density function in the vicinity of the deterministic
trajectory. The density for larger deviations is obtained based on the minimization
of the Lagrangian within a variational framework. Moreover, the question of
persistence of trajectories within a given domain with an absorbing boundary may
be addressed by constructing an eigenvalue problem for the time-invariant and
elliptic di!usion operator. The reciprocal to the "rst eigenvalue constitutes
a measure of the persistence time within the domain. In a recent seminal work,
Smelyanksi et al. [18] consider the topological pattern of large #uctuations away
from a stable limit cycle, surrounding an unstable focus, using an optimal path
concept. Given a dynamical system with a stable limit cycle, the approach would be
to follow the geometry of the Lagrangian manifold of an auxilliary Hamiltonian
system. It is shown that the pattern of the Lagrangian surface near the unstable
focus may be many-fold and helicoidal. Projection of these folds on the hyperplane
of the auxilliary variables is a caustic, from which extreme paths are re#ected. Two
caustics meet at a point called cusp. A caustic is not physically observable as it is
never reached by an optimal trajectory. Singularities in the form of switching lines
between caustics may lead to several attracting zones for the optimal trajectories. It
is shown that the zero-energy action near the unstable focus is not exactly quadratic
in terms of the distance from the focus and thus the stationary density function near
the focus is more complicated than an inverted Gaussian function. Thus, it is
concluded that a dynamical system may show up certain &&hidden degrees of
freedom'' when brought close to an unstable "xed point (not necessarily a saddle).
Some further work on zero-dispersion non-linear resonance and bifurcation of limit
cycles under weak stochastic noise may be found in references [11, 12].

Even though there exists an extensive pool of analytical tools on non-linear
oscillators on stationary stochastic excitations [9], no such accurate and widely
applicable numerical method is available to handle the non-stationarity that arises
due to combined harmonic and stationary stochastic excitations. Thus, such
concepts as evolutionary spectral analysis [13] or equivalent linearization with
time-dependent frequency response function [14] are not accurate enough to cover
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a wide variety of response statistics that may be so characteristic of several
non-linear oscillators of engineering interest.

In the present study, an analytical tool based on KB averaging is developed to
obtain di!erent types of one-periodic orbits in a class of non-linear oscillators. This
is followed by a stability analysis for such orbits via Floquet's theory and
construction of corresponding stability diagrams in the parameter space. The
problem of a non-linear oscillator under combined harmonic (deterministic)
and weak white noise excitation is considered next. Under a weak intensity of the
white noise process, a perturbation scheme followed by cumulant neglect closure
is proposed to analytically predict a wide class of non-stationary response statistics
in terms of their evolving moment functions. A few numerical results are presented
to illustrate the e!ect of a weak stochastic perturbation on a class of non-linear
oscillators with a deterministic sinusoidal forcing term. The major advantages
and some limitations of the present method, including the important issue of
its application to higher-dimensional (Md.o.f.) dynamical systems, are also
discussed.

2. THE NONLINEAR OSCILLATORS

Three di!erent non-linear oscillators will be considered at di!erent stages of the
present paper. These are the hardening Du$ng's (HD), Ueda's and Du$ng}
Holmes' (DH) oscillators, all of which have cubic non-linearity with or without
a linear sti!ness term. The HD oscillator, for example, is given by the following
second order ordinary di!erential equation (ODE)

zK#czR#k
1
z#k

2
z3"P cos(jt). (1)

Here dots denote di!erentiation with respect to t and all the "ve parameters,
namely c, k

1
, k

2
, P and j, are non-negative real numbers. It is convenient to reduce

these "ve parameters to three via the following set of transformations:

x"z/z
c
, z

c
"(k

1
/k

2
)1@2, q"jt/2n . (2)

This results in

x@@#2ne
1
x@#4n2e

2
(x#x3)"4n3e

3
cos(2nt). (3)

Here primes denote di!erentiation with respect to the non-dimensional time
parameter, q. However, for further discussions, primes would be replaced by dots
and q by t. Ueda's oscillator does not have the linear term in x and is thus
represented by

xK#2ne
1
xR #4n2e

2
x3"4n2e

3
cos(2nt) . (4)

The DH oscillator, on the other hand, has a negative linear sti!ness in x and is
given by

xK#2ne
1
xR #4n2e

2
(x3!x)"4n2e

3
cos(2nt). (5)



Figure 1. Numerically computed small and large one-periodic orbits for DH oscillator: small orbit:
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3. ONE-PERIODIC ORBITS

Under harmonic forcing, dissipative non-linear oscillators often respond at the
forcing frequency. Such a response is referred to as one-periodic. Several analytical
techniques, such as harmonic balancing or KB averaging, are available to e$ciently
compute one-periodic orbits. Even though an analytical prediction is, at best, only
approximate, the advantage of such a procedure lies in that it allows a better insight
into the non-linear dynamical characteristics. For all the three oscillators, as
mentioned in the last section, one-periodic orbits exist over considerable ranges of
parameter values. For example, for su$ciently small values of the forcing
amplitude parameter, e

3
, the two stable sinks at M$1, 0N for DH oscillator Hopf-

bifurcate into a pair of stable one-periodic orbits, encircling each of the singularities
at M$1, 0N. These one-periodic orbits will henceforth be termed &&small one-periodic
orbits''. For still larger values of e

3
, a dumb-bell shaped one-periodic orbit

surrounding all the three singularities at M$1, 0N and at M0, 0N is observed. These
dumb-bell shaped orbits will be referred to as &&large one-periodic orbits''. In
Figure 1, numerically computed small and large one-periodic orbits are shown.
A similar scenario holds for HD and Ueda's oscillators as well, with the exception
that small orbits, in these cases, encircle the singularity at M0, 0N. As an illustration,
Figure 2 shows a few of such typical orbits for Ueda's oscillator. All the orbits, as
reported in these two "gures, have been obtained using a sixth order Runge}Kutta
scheme with a time-step Dt"0)01. Presently, the possibility of an uni"ed analytical
computation for all such orbits is explored.



Figure 2. Numerically computed small and large one-periodic orbits for Ueda's oscillator: small
orbit: e
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3.1. DH OSCILLATOR

A major di$culty faced in developing an analytical solution for small and large
one-periodic orbits is the scarcity of simple analytical expressions, which can
closely simulate the shape of such orbits. For the DH oscillator, the solution of
a small orbit encircling the sink at M1, 0N is taken to be of the form

x"exp(!y), xR "!yx (6a)

followed by

y"C#r cos(2nt!t). (6b)

Substitution of this equation in the original ODE followed by harmonic balancing
results in the following transcendental equation for r:

PM 2e2
1
r2#QM 2Mr!2e

2
exp(!2C)I

1
(2r)N2"Me

3
exp(C)PM QM N2, (7a)

where

exp(!2C)"
(2e

2
!r2)PM !2rI

1
(r)

e
2
M2I

0
(2r)PM !4I

1
(r)I

1
(2r)N

,

tant"

e
1
rPM

QM Mr!2e
2
exp(!2C)I

1
(2r)N

,

PM "I
0
(r)#I

2
(r),

QM "I
0
(r)!I

2
(r) . (7b)
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In the above expressions, I
j
denotes the modi"ed Bessel's function of order j"0, 1,

2, 32. Similar expressions hold good for the small orbit encircling the other sink at
M!1, 0N with the exception that x has to be taken in the form

x"!exp(!y). (8)

The amplitudes of the large one-periodic orbits are much higher than those of small
one-periodic orbits. For most of the parameter ranges, especially for relatively
higher values of e

3
, this large orbit is asymmetric. However, for certain parameter

values, especially for values of e
3

immediately above those at which the strange
attractor disappears, large one-periodic orbits have a two-sided symmetry in the
phase plane. To obtain such solutions, the transformation

x"y exp(y2) with y"r cos 2n(t!t) (9, 10)

is used. Substitution of the above expressions in DH equation (5) followed by
harmonic balancing "nally leads to the transcendental equation

C2
1

(r)#C2
2

(r)!16n4e2
3
"0. (11)

The phase angle t is given by

tan(2nt)"
C
1
(r)

C
2
(r)

, (12)

where

C
1
(r)"2ne

1
F
1
(r),

C
2
(r)"F

2
(r)#4n2e

2
MF

3
(r)!F

0
(r),

F
0
(r)"MI

0
(r2/2)#I

1
(r2/2)Nr exp(r2/2),

F
1
(r)"M!2nr exp(r2/2)!nr3 exp(r2/2)NI

0
(r2/2)#2nr exp(r2/2)I

1
(r2/2)

#nr3 exp(r2/2)I
2
(r2/2)#2,

F
2
(r)"!4n2r exp(r2/2)I

0
(r2/2)#2n2r5 exp(r2/2)I

0
(r2/2)

!4n2r exp(r2/2)I
1
(r2/2)!8n2r3 exp(r2/2)I

1
(r2/2)

#n2r5 exp(r2/2)I
1
(r2/2)!8n2r3 exp(r2/2)I

2
(r2/2)

!2n2r5 exp(r2/2)I
2
(r2/2)!n2r5 exp(r2/2)I

3
(r2/2)#2,

F
3
(r)"0)75r3 exp(3r2/2)I

0
(3r2/2)#r3 exp(3r2/2)I

1
(3r2/2)

#0)25r3 exp(3r2/2)I
2
(3r2/2)#2. (13)
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Here, I
j
( ) ), j"0, 1, 2, 32 are the modi"ed Bessel's functions of order j. In deriving

the above expressions, the following well-known identity has been made use of:

expMr cos 2n(t!t)N"I
0
(r)#2

=
+
j/0

I
j
(r)cos 2nj (t!t). (14)

It may be mentioned that the large one-periodic orbits considered here have
a two-sided symmetry about the x- and xR -axis, which intersect at the origin M0, 0N.
Thus, no constant term has been included in equation (10). The present technique is
therefore incapable of predicting large asymmetric orbits, especially if the
asymmetry is too pronounced.

3.2. UEDA'S AND HD OSCILLATORS

The usual approach for analytical computation of small one-periodic orbits in
these cases is to assume

x"r cos 2n(t!t), xR "!2nr sin 2n(t!t) (15)

followed by harmonic balancing or averaging. Such a scheme however fails to
predict the large orbits. Here it is of interest to see whether the transformations as in
equations (9) and (10) may be used to predict both the small and large one-periodic
orbits for these two oscillators. Thus, for example, one has to again solve equations
(11) and (12) for r and t, which together completely specify the orbit. The
expressions for C

i
(r) and F

i
(r) , as in equation (13), are also the same with the

following modi"cations:

;eda1s: F
0
(r)"0, (16a)

HD: C
2
(r)"F

2
(r)#4n2e

2
MF

3
(r)#F

0
(r). (16b)

3.3. STABILITY ANALYSIS

Now that approximate analytical expressions for small and large one-periodic
orbits are available, it is necessary to verify whether they are stable solutions for the
original dynamical system. This is achieved in the usual way using the linear "rst
variational equation around the approximate periodic orbit followed by
a consideration of its eigenvalues. As a further illustration, for the DH oscillator,
the linearized and time-variant "rst variational equation around the periodic orbit
is given by

<Q "A(t )<, (17)

where <(t)"Ml (t) ) lR (t)NT is the vector of small variations around the approximate
periodic solution and

A(t)"C
0 1

!4n2e
2
(3x2

p
!1) !2ne

1
D . (18a)
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Here Mx
p
(t) , xR

p
(t)N denote co-ordinates along the computed periodic orbit projected

on the x}xR plane. Since A(t) is explicitly time-dependant, it is not easy to compute
the associated fundamental solution matrix [15]. Equation (17) is therefore
converted into a map by numerically solving the equation over one complete cycle
of the anticipated one-periodic oscillation. The discrete map so created has a time-
step of one full period. The eigenvalues of the associated coe$cient matrix for this
map are called Floquet multipliers and the analytical solution is obviously stable if
the largest multiplier is less than one [15]. The set of parameters for which the
highest Floquet multipliers remain less than one forms a boundary in the
parameter space. For any choice of parameters within this stability boundary, the
response is bound to be one periodic.

Here it is worth mentioning that in certain oscillators with saddle-type
connections, such as the DH oscillator, repeated transversal intersections of the
stable and unstable manifolds of the saddle often lead to a complicated response,
such as chaos. A necessary, but not su$cient, condition for such intersection to take
place is that the associated Melnokov function [1] has a zero for some choice of
parameters. If zeros of the function can be obtained for di!erent choices of relevant
parameters, then a boundary in the parameter space, called the Melnikov
boundary, may be constructed. For any choice of parameters within this boundary,
the response for the original dynamical system is going to be non-chaotic. In case of
DH oscillator, the Melnikov boundary in the (e

3
!e

2
!e

1
) space is given by the

following equation:

e
3
"(e

1
Je

2
/24n2) sinhMn/(2Je

2
)) . (18b)

3.4. NUMERICAL RESULTS

First, the analytically computed one-periodic orbits for the DH oscillator are
compared with the numerically simulated orbits in Figure 3. It may be noted that
even though the exponential transformations as in equation (6a) are quite useful in
closely approximating the egg-shaped actual orbits, the comparison between the
simulated and actually orbits is not good for higher values of e

2
. The stability

boundary of such orbits, as computed via Floquet's theory, is shown in Figure 5. In
Figure 4, a large one-periodic orbit, computed via the transformation in equation
(9), is shown and compared against numerical simulation. The comparison is found
to be favourable and has been found to be consistent so as long as the actual orbits
do not depart too much from the two-sided symmetry. The stability boundaries for
these large one-periodic orbits on the e

3
}e

2
plane, along with the Melnikov

boundary (equation 18(b)), is also shown in Figure 5. It is seen that Floquet
stability boundaries for periodic orbits delimit the non-chaotic regions in
parameter space better than the associated Melnikov boundary. In contrast to the
DH oscillator, one-periodic small and large orbits for both Ueda's and HD
oscillators share similar characteristics and thus limited results on only Ueda's
oscillators are presented in this section. Analytically computed small and large
one-periodic orbits for Ueda's oscillator are reported in Figures 6 and 7 along with



Figure 3. Analytically and numerically computed small one-periodic orbits for DH oscillator: (a)
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corresponding results via numerical simulation. The comparisons are again quite
favourable as long as the orbits remain symmetric about the x and xR axes. One
typically asymmetric case is shown in Figure 7(c). It may be mentioned that for this
case, the highest Floquet multiplier is 0)998, i.e., quite close to 1. Finally, Floquet
stability boundaries of all these small and large one-periodic orbits are shown in
Figure 8 in the e

3
}e

2
plane for "xed e

1
.



Figure 4. Analytically and numerically computed large one-periodic orbits for DH oscillator:
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Figure 6. Analytically and numerically computed small one-periodic orbits for Ueda's oscillator:
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4. COMBINED HARMONIC AND WEAK WHITE NOISE EXCITATIONS

In this section, the e!ect of a weak stochastic perturbation on the dynamical
systems given by equations (3)}(5) is studied using a perturbation scheme followed
by some closure approximation. Even though the methodology is illustrated for
Sd.o.f. systems and additive white noise perturbations, it admits a very
straightforward extension to Md.o.f. oscillators with additive and/or multiplicative



Figure 7. Analytically and numerically computed small one-periodic orbits for Ueda's oscillator:
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non-white stochastic perturbations. To begin with, the Sd.o.f. oscillators are
projected into a state-space vector form as

eXQ "b(eX, t)#ep(eX)=MQ (t), (19)

where eX[sx sxR ], e is a real number in [0, 1), b"[b
1

b
2
]T is the vector valued drift

term, p is the matrix valued di!usion term and =M "[0=]T is a vector Wiener
process. It is known that for e"0, the solution of equation (19) exists and is unique
[16], whenever b is Lipschitzian, i.e., satisfying a linear growth bound. Since white
noise process, which is the formal derivative of a Wiener process, does not have
continuous and bounded sample paths, the deterministic theory of existence and
uniqueness is not readily extendible for e'0. However, for any t'0, if the random
variable max

0)s)t
DeX

s~
X

s
D is considered, then one can ask whether in the limit as

eP0, the probability density of this variable goes to zero or not. Moreover, it is of
interest to see whether the second moment of this random variable is bounded for
any non-zero e3(0, 1). The following results [8] settle such issues.



Figure 8. Stable regions of small and large one-periodic orbits for Ueda's oscillator: e
1
"0)25.
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Results 1: Assume that the coe$cients of equation (19) satisfy a Lipschitz
condition and increase no further than linearly:

2
+
i/1

[b
i
(X)!b

i
(>)]2#+

i, j

[p
ij
(X)!p

ij
(>)]2)K2 DX!> D2

and
2
+
i/1

[b
i
(X)]2#+

i,j

[p
ij
(X)]2)K2 DX!> D2 . (20)

Then for all t'0 and d'0, one has

E DeX
t
!X

t
D2)e2a(t) lime?0

PMmax
0)s)t

DeX
s
!X

s
D'dN"0, (21a, b)

where a (t) is a monotonically increasing function which can be expressed in terms
of DXD and the constant K.

In fact, for DH, HD and Ueda's oscillators under combined harmonic and an
additive white noise excitation with constant di!usion coe$cients, it can be shown
via a stochastic Liapunov function approach [17] that all the di!erent moment
functions of the perturbed process eX

t
are bounded in "nite time. Now, it is of

interest to see whether the following classical perturbation scheme can be used to
study the solution of equation (19):

eX
t
"X(0)

t
#eX(1)

t
#e2X(2)

t
#2#ekX(k)

t
#eR(k`1)(t) . (22)
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Here the di!erent constituent processes, X(i)
t
, are evaluated by substituting equation

(22) in equation (19) and equating the various powers of the &&smallness parameter''
e. In order to see the applicability of this expansion to the dynamical system (19),
the following results by Blagovshchensky [18] are useful.

Results 2: Suppose b
i
(X) and p

ij
(X), (i, j"1, 2) as in equation (19) have bounded

partial derivatives up to order k#1. Then using equation (22) with e in [0, 1), the
random process eX

t
gets approximated to O(ek) if one retains only k terms in the

expansion. More precisely, the remainder eR(k`1)(t) in equation (22) satis"es the
inequality

sup
0)t)T

(E DeR(k`1)(t) D2)1@2)Cek`1, C(R. (23)

It is worth mentioning here that the above results are also valid when the stochastic
perturbation is non-white with uniformly continuous sample paths. The interest
now is to see how the stochastic perturbation scheme works for the cubic
oscillators, as described in section 2, in the simplest case of purely additive white
noise excitations with constant (non-random) di!usion coe$cients. Towards this,
the oscillators are "rst represented in the following state-space form:

xR
1
"x

2
,

xR
2
"b

2
(x

1
, x

2
, t)#eD1@2=Q (t), (24)

where=(t) is a unit Gaussian Wiener process, i.e.,

S=Q (t)T"0, S=Q (t
1
)=Q (t

2
)T"d (t

2
!t

1
) (25)

and the drift term, b
2
(x

1
, x

2
, t), is given by

b
2
"!2ne

1
x
2
!4n2e

2
x3
1
#4n2e

3
cos(2nt) (Ueda's),

"!2ne
1
x
2
!4n2e

2
(x

1
#x3

1
)#4n2e

3
cos(2nt) (HD),

"!2ne
1
x
2
!4n2e

2
(x3

1
!x

1
)#4n2e

3
cos(2nt) (DH). (26)

Use of the perturbation series (19) in equation (24) with b
2

as in HD oscillator, for
instance, results in

e0 : xR (0)
1
"x(0)

2

xR (0)
2
"!2ne

1
x(0)
2
!4n2e

2
Mx(0)

1
#(x(0)

1
)3N#4n2e

3
cos(2nt), (27)

e1 : xR (1)
1
"x(1)

2

xR (1)
2
"!2ne

1
x(1)
2
!4n2e

2
x(1)
1
!12n2e

2
(x(0)

1
)2x(1)

1
#D1@2=Q (t), (28)
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e2 : xR (2)
1
"x(2)

2

xR (2)
2
"!2ne

1
x(2)
2
!4n2e

2
x(2)
1
!12n2e

2
(x(0)

1
)2x(2)

1
!12n2e

2
x(0)
1

(x(1)
1

)2 . (29)

and so on. It may be readily observed that equation (27) is essentially the
deterministic non-linear oscillator itself (i.e., without the stochastic perturbation
term), for which some analytical solutions for a class of orbits were developed in the
last section. Equations (28) and (29), on the other hand, describe the e!ect of
stochastic perturbation. ¹hus, using this perturbation scheme, the usefulness of
analytical tools is distinctly carried over to the stochastic case as well. It may also be
noted that the conditional vector stochastic process (x(1)

1
, x(1)

2
Dx(0)

1
, x(0)

2
) is jointly

Gaussian. For e
3
"0, one has (x(0)

1
, x(0)

2
)P(0, 0) asymptotically as tPR and thus

(x(1)
1

, x(1)
2

) is jointly Gaussian. However, for e
3
O0, if x(0)

1
(t) admits a periodic

solution as given by equations (9) and (10), then the information on the phase t is
lost once the oscillator, given by equation (27), is on the periodic orbit. In this case,
t can be considered to be a random variable and that (x(1)

1
, x(1)

2
) is non-Gaussian. It

is therefore seen that use of terms up to O(e) in the perturbation scheme fails to
bring in non-Gaussianity in the stationary density function when no harmonic
excitation is present. The non-Gaussianity is, however, accounted for in equation
(29), which contributes a stochastic correction of O(e2). A careful study of equation
(28) also reveals that as tPR, one has Sx(1)

1
(t)T"Sx(1)

2
(t)T"0. This is due to

a strictly negative viscous damping and a strictly positive coe$cient of x(1)
1

in
equation (28). The "rst moment of eX

t
is therefore completely determined upto O(e)

by the deterministic process X(0). On the other hand, equation (29) indeed
contributes to SeX(t)T and thus

SeX(t)T"SX(0)(t)T#e2SX(2)(t)T#O(e3) . (30)

These observations clearly highlight the importance of O(e2) correction in
bringing out the &&non-linear e+ects11 into the stochastic response of the original
oscillator.

4.1. DERIVATION OF MOMENT EQUATIONS

First, the stochastic process, x(2)
1

(t), is split up as

x2
1
(t)"m

2
#z

2
, m

2
"Sx2

1
(t)T. (31)

This leads to the following ODE and SDE (stochastic di!erential equation) for m
2

and z
2
, respectively,

mK
2
#2ne

1
mR

2
#4n2e

2
(m

2
#3(x(0)

1
)2m

2
#3x(0)

1
S(x(1)

1
)2T)"0, (32)

zK
2
#2ne

1
zR
2
#4n2e

2
(z

2
#3(x(0)

1
)2z

2
#3x(0)

1
((x(1)

1
)2!S(x(1)

1
)2T)"0. (33)
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For convenience of deriving ODEs in terms of the moment functions, it is expedient
to introduce the following replacements:

y
0
"x(0)

1
, y

1
"x(1)

1
, y

2
"x(1)

2
, y

3
"z

2
, y

4
"zR

2
(34)

leading to the following SDEs in y
i
, i"1, 2, 3, 4, in state-space form

yR
1
"y

2
,

yR
2
"!2ne

1
y
2
!4n2e

2
y
1
!12n2e

2
y2
0
y
1
#D1@2=Q (t),

yR
3
"y

4
,

yR
4
"!2ne

1
y
4
!4n2e

2
y
3
!12n2e

2
y2
0
y
3
!12n2e

2
y
0
(y2

1
!Sy2

1
T) . (35)

Due to presence of white noise, the vector process (y
1
,y

2
, y

3
, y

4
) is a jointly

Markovian vector di!usion process. Moment equations may therefore be derived
using the Ito di!erential rule [11]. For the present study, attention would be
restricted to moments up to order 4, i.e., of the type Syi

1
yj
2

yk
3
yl
4
T, i, j, k, l"0, 1, 2, 3,

4 with i#j#k#l44. Since the "rst moments Sy
i
T, i"1, 2, 3, 4 vanish to zero as

tPR, it su$ces to write down ODEs for the second moment onwards. This
exercise leads to 65 "rst order ODEs, which are partly listed below:

d
dt

Sy2
1
T"2Sy

1
y
2
T,

d
dt

Sy2
2
T"!4ne

1
Sy2

2
T!8n2e

2
Sy

1
y
2
T (3x2

0
#1)#2D,

d
dt

Sy2
3
T"2Sy

3
y
4
T,

d
dt

Sy2
4
T"!4ne

1
Sy2

4
T!8n2e

2
(Sy

3
y
4
T#3y

0
Sy2

1
y
4
T#3y2

0
Sy

3
y
4
T),

d
dt

Sy
1
y
2
T"Sy2

2
T!2ne

1
Sy

1
y
2
T!4n2e

2
(Sy2

1
#3y2

0
Sy2

1
T ),

d
dt

Sy
1
y
3
T"Sy

2
y
3
T#Sy

1
y
4
T,

d
dt

Sy
1
y
4
T"!2ne

1
Sy

2
y
3
T!4n2e

2
Sy

1
y
3
T (1#3y2

0
)(y

2
y
4
T,

d
dt

Sy
2
y
3
T"!2ne

1
Sy

2
y
3
T!4n2e

2
Sy

1
y
3
T (1#3y20 )#Sy

2
y
4
T,

d
dt

Sy
2
y
4
T"!4ne

1
Sy

2
y
4
T!4n2e

1
Sy

1
y
4
T#Sy

2
y
3
T)!12n2e

2
y
0
(Sy2

1
y
2
T

#y
0
Sy

2
y
3
T#y

0
Sy

2
y
3
T#y

0
Sy

1
y
4
T),



RESPONSE OF NON-LINEAR OSCILLATORS 757
d
dt

Sy3
1
T"2Sy2

1
y
2
T,

d
dt

Sy2
1
y
2
T"2Sy

1
y2
2
T!2ne

1
Sy2

1
y
2
T!4n2e

2
Sy3

1
T (1#3y2

0
) ,

d
dt

Sy3
1
y
3
T"2Sy

1
y
2
y
3
T#Sy2

1
y
4
T,

F

F

d
dt

Sy4
3
T"4Sy3

3
y
4
T,

d
dt

Sy3
3
y
4
T"3Sy2

3
y2
4
T!2ne

1
Sy3

3
y
4
T!4n2e

2
Sy4

3
T (1#3y2

0
)

!12n2e
2
y
0
(Sy2

1
y3
3
T!Sy2

1
TSy3

3
T),

d
dt

Sy2
3
y2
4
T"2Sy

3
y3
4
T!4ne

1
Sy2

3
y2
4
T!8n2e

2
Sy3

3
y
4
T (1#3y2

0
)

!24n2e
2
y
0
(Sy2

1
y2
2
y
4
T!Sy2

1
TSy2

2
y
4
),

d
dt

Sy
3
y3
4
T"Sy4

4
T!6ne

1
Sy

3
y3
4
T!12n2e

2
Sy2

3
y2
4
T(1#3y2

0
)

!36n2e
2
y
0
(Sy2

1
y
3
y2
4
T!Sy2

1
TSy

3
y2
4
T),

d
dt

Sy4
4
T"!8ne

1
Sy4

4
T!16n2e

2
Sy

3
y3
4
T (1#3y2

0
)

!36n2e
2
y
0
(Sy2

1
y3
4
T!Sy2

1
TSy3

4
T). (36)

Since the system of equations (35) is non-linear, the set of moment equations (36) is
not closed in that it contains "fth order moments of the type Syi

1
yj
2
yk
3
yl
4
T with

i#j#k#l"5. It is here that a closure approximation is called for so that these
higher order moments can be approximately replaced by a suitable combination of
lower order ones.

4.2. A CUMULANT NEGLECT CLOSURE

It is well known that unlike the statistical moments, various cumulants
(alternatively known as semi-invariants) of increasingly higher orders form a
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non-increasing sequence [9]. Moreover, it is expected that the physical signi"cance
of a cumulant decreases as the order increases and the most important properties of
a random process are revealed in the lower order cumulants [19]. Here, it is
assumed that the cumulants of the order higher than 4 are all zero. This is then
a "fth order cumulant neglect approximation and leads to the following algebraic
equations for closure:

Sy5
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1
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Use of the above set of relationship in equation (36) results in a closed set of
non-linear moment equations which can be integrated numerically.

4.3. NUMERICAL RESULTS

Equations (36) have been solved together with equations (27) and (32) to obtain
the evolving moment #ows up to order 4. For numerical integration, a sixth order
Runge}Kutta scheme with a step size of 0)01 has been made use of. First, as a check,
only the HD oscillator under white noise excitation is considered. In this and all the
following examples, the parameter e has been assigned the value 1 without any
loss of generality. The stationary variance of the process ex(t), henceforth called
x(t) for simplicity, is plotted in Figure 9. The plotted variance is seen to be
quite close to the exact variance of 0)016. The case of combined white noise and
harmonic excitations is considered next. Towards this a small one-periodic
(deterministic) orbit is "rst shown in Figure 10(a), and the e!ect of stochasticity in
the phase plane of mean of the process x(t) and its derivative xR (t) is reported in the
same "gure. The O(e2) stochastic correction is pretty clear. Evolutions of variances
of the processes x (t) are shown in Figures 10(b) and 10(c) respectively. It may be
pointed out that instead of solving equation (27) numerically, transformations (9)
and (10) may be directly under to solve for this equation in the one-periodic regime.
In Figure 11, similar results as in "gure (10) are reported for the case when the
deterministic part of the oscillator admits a large one-periodic orbit. In
Figures 12}14, the phase plane structure of the mean and its derivative along with
evolutions of variances are shown for certain multi-periodic cases. It is readily
observed that the e!ect of O(e2) stochastic correction to the mean may sometimes
be quite considerable.

¹he present scheme is however unable to yield converged estimates of evolving
moment functions when the parameters are so chosen that the deterministic part of the
oscillator is in the chaotic regime. The fault here probably lies with the closure
Figure 9. Response variances of DH oscillator only under white noise: e
1
"0)25, e

2
"1)0, D"0)1.



Figure 10. Response of DH oscillator under harmonic and/or stochastic excitations, e
1
"0)25,

e
2
"1)0, e

3
"0)1, D"0)1. (a) Phase plot**Only harmonic excitation, ) ) ) ) combined harmonic and

random excitation; (b) evolving variance of x; (c) evolving variance of xR .
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approximation, which fails to catch the locally unstable nature of each of the
realizations of evolving trajectories.

Precisely, similar developments as reported in sections 4.1, 4.2 and this section so
far, hold true for DH and Ueda's oscillators as well. Results for these two cases are
therefore not reported explicitly in the present study.

5. DISCUSSIONS AND CONCLUSIONS

A few analytical approaches for studying a class of deterministic and a wider
class of stochastic response of some non-linear Sd.o.f. oscillators are presented in
this paper. In case of oscillators driven only by harmonic excitation, certain
transformations are proposed to analytically obtain various types of symmetric
one-periodic orbits. The stability boundaries for such orbits have also been studied



Figure 11. Response of DH oscillator under harmonic and/or stochastic excitations, e
1
"0)25,

e
2
"1)0, e

3
"9)0, D"0)1. (a) Phase plot**Only harmonic excitation, ) ) ) ) combined harmonic and

random excitation; (b) evolving variance of x; (c) evolving variance of xR .
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using Floquet's theory and these boundaries have been plotted in the associated
parameter space. The problem of "nding the stochastic response of non-linear
oscillators under combined harmonic and weak white noise excitations is next dealt
with via a stochastic perturbation approach. First, mathematical justi"cations for



Figure 12. Response of DH oscillator under harmonic and/or stochastic excitations, e
1
"0)25,

e
2
"1)0, e

3
"11)1, D"0)1. (a) Phase plot ** Only harmonic excitation, ) ) ) ) combined harmonic

and random excitation; (b) evolving variance of x; (c) evolving variance of xR .
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such an approach is provided in terms of boundedness of evolving moment
functions as well as vanishing of probability distribution of the random process,
denoting the di!erence between randomly perturbed and unperturbed response
processes in the limit of the strength of random forcing function going to zero.
Implementation of the proposed scheme is then illustrated for a class of simple
Sd.o.f. non-linear oscillators. ¹he method has the advantage of uncoupling the



Figure 13. Response of DH oscillator under harmonic and/or stochastic excitations, e
1
"0)25,

e
2
"1)0, e

3
"5)8, D"0)1. (a) Phase plot** Combined harmonic and random excitation; ) ) ) only

harmonic excitation; (b) evolving variance of x; (c) evolving variance of xR .
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Figure 14. Response of DH oscillator under harmonic and/or stochastic excitations, e
1
"0)25,

e
2
"1)0, e

3
"5)8, D"0)05. (a) Phase plot ** Only harmonic excitation, ) ) ) ) combined harmonic

and random excitation; (b) evolving variance of x; (c) evolving variance of xR .
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deterministic part of the response process from the stochastic part, which is actually
coupled with the deterministic part. The approach enables one to precisely study the
stochastic correction to known deterministic solutions due to weak random
excitations. If e denotes, in a sense, strength or intensity of the noise process, then
terms up to O(e) in the perturbation series predict only the nearest Gaussian
estimate. However, non-Gaussian corrections, so characteristic of non-linear
oscillators even under Gaussian inputs, are predicted by terms of O(e2) and higher.
Since the noise process in the present study has been restricted to white noise only,
ODEs for moment equations have been derived using the well-known Ito calculus.
The problem being non-linear, these equations constitute an in"nite hierarchy and
naturally call for a suitable closure approximation. A "fth order cumulant neglect
closure has been adopted for the present study. It has been found that the closure
approximation gives convergent and accurate estimates of moments, provided that the
associated response is not in the chaotic regime. Unfortunately, a suitable closure
scheme in the chaotic regime still remains an unresolved issue.

An additional advantage in the stochastic perturbation approach is its rather
straightforward extension to Md.o.f. nonlinear systems of engineering interest
under white or non-white random excitations. Of similar interest would be the case
where the stochastic excitation is in the form of Poisson's white noise or a general
a-stable process. Another important question not dealt with here is that of
stochastic stability of the analytical solutions. These issues require further
investigations and will be taken up elsewhere.
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